

What is a network?

A network is a group of computers that are wired together in some fashion which enables sharing of information and services

<u>Required network elements</u> ?

- At least two individuals who have some thing to share : - <u>(Network Services)</u>
- A method or pathway for connecting each other : - (Transmission Media)
- Rules so that two or more individuals can communicate : - (Protocols)

Network Services

 The capabilities that networked computers share. These are provided by numerous combinations of computer hardware and software

Two types of networks

- Peer to peer : Allow any entity to both request and provide network services
- Server centric : Places
 restrictions upon which entity may make requests or service them

Transmission Media

- The pathway networked entities use to contact each other
- Includes cable and wireless technologies

Protocols

- Rules required to help entities communicate or understand each other
- When both entities formally agrees to use a common language , there established a successful communication protocol

NETWORK SERVICES

- File Services
- Print Services
- Message Services
- Application Services
- Database Services

File Services

- Includes network apps designed to efficiently store, retrieve or move data files.Its main functions are
 - File transfer
 - File storage and data migration
 - File update synchronization
 - File archiving

Print services

Are network apps that control and manage access to printers and fax equipment.Its functions are,

- Provide multiple access from limited interfaces
- Eliminate distance constraints
- Handle simultaneous requests and queue those requests
- Share specialized equipment

Message services

- Include storing, accessing and delivering text, binary, graphic, digitized video and audio data. Its functions are,
 - * Electronic mail
 - Integrated electronic mail and voice mail
 - Object-oriented applications
 - Workgroup applications

Application services

- Are network services that run software for network clients.Its functions are,
 - Specialization of servers
 - Scalability and growth

Database Services

- Provides server-based database storage & retrieval that allow network clients to control data manipulation and presentation. They provide
 - Data security
 - Co-ordination of distributed data
 - Replication

 Cable Media : - using wires or fibers that conduct electricity or light

- Twisted pair cable
- Co-axial cable
- Fiber-optic cable
- Wireless media : -typically uses higher electromagnetic frequencies

Twisted Pair Cable

- Uses twisted copper wires of 22-26 gauge
- Two types : -
 - Unshielded Twisted Pair
 - Shielded Twisted Pair

Unshielded Twisted Pair (UTP)

- Composed of a set of twisted pairs with a simple plastic encasement.
- Uses RJ 45 connector
- Follows EIA's cable category standards i.e. CAT 1- CAT5

Features : -

- Cost : extremely low
- Ease of installation and reconfiguration
- Capacity 1–100MBps
- Attenuation affects if the length is more than a 100 meters
- EMI the copper cable used is prone to EMI

Shielded Twisted Pair

- Insulated cable which includes bundled pairs wrapped in a foil shielding
- Extensively used by Apple and IBM in proprietary networks
- Features : -
 - Cost moderately expensive
 - Installation difficult

- More bandwidth efficient and can use higher frequencies
- Up to 500MBps at 100m (common is 16MBps)
- Attenuation similar to UTP
- EMI very less due to shielding

Co-axial cable

- Is made of two conductors that share a common axis
- 4 types : -
 - 50 Ohm RG-8 7 RG-11 (used in thick Ethernet)
 - 50 Ohm RG-58 (Used in thin Ethernet)
 - 75 Ohm RG-59 (Used for cable TV)
 - 93 Ohm RG-63 (Used for ARC net)

Features : -

- Cost approx: same as UTP
- Installation simple
- Bandwidth only used in networks with 10MBps or less
- EMI resists better than TP cables

Fiber Optic Cable

- Made of a light conducting glass or plastic core surrounded by cladding and a tough outer sheath
- Single mode : allows only one light path
- Multi mode : allows various paths

Common types : -

- 8.3micron core/125micron cladding (single)
- 62.5microncore/125 micron cladding (multi)
- 50micron core/125 micron cladding (multi)
- 100micron core/140micron cladding (multi)
- Features : -
 - Cost relatively expensive
 - Installation difficult
 - Bandwidth-very high 100MBps to >2GBps
 - Attenuation very low
 - Interference more immune

Wireless media

- Transmits and receives signals without an electrical or optical conductor
- Common 3 types
 - Radio wave
 - Microwave
 - Infrared light

Radio Frequency

- Resides between 10KHz to 1 GHz
- Can be broadcast omni directionally, or fine tuned for directional emissions from a variety of transmitting antennas
- Low attenuation
- Stations can be mobile or stationary

Microwave

Exists in two forms

- Terrestrial systems (earth based) uses directional parabolic antennas.Operates in 4-6 or 21-23 GHz range, expensive, high bandwidth etc
- Satellite systems –Uses directional parabolic antennas located on earth and geosynchronous orbiting satellites .11–14 GHz, expensive, prone to atmospheric interference.

Infrared

- Most useful in small or open indoor environments
- Not capable of penetrating walls or other opaque objects
- Operates in 100GHz to 1,000 THz
- Two categories
 - Point-to-point directed at specific targets
 - Broadcast relaxes the focus to a wide area

Network Connectivity Hardware

Repeaters
Hubs
Bridges
Multiplexers

Repeater

- Is an amplification device used to increase the medium's max: effective distance
- Two types
 - Amplifier : amplifies all incoming signals including undesirable noise (simple,fast)
 - Signal regenerating repeater : strips data out of the signal, reconstructs and retransmits the signal (complex,time consuming)

Hubs

- Provides a central point of connection between media segments are called hubs, multiport repeaters or concentrators
- Three types
 - Passive
 - Active
 - intelligent

Passive Hub : - Connects medium segments together , no signal regeneration is performed

- Active Hub : Like passive one but it regenerates or amplifies signals
- Intelligent Hubs : -In addition to signal regeneration and network management, it provides intelligent path selection, and can choose different paths for delivery

Bridge

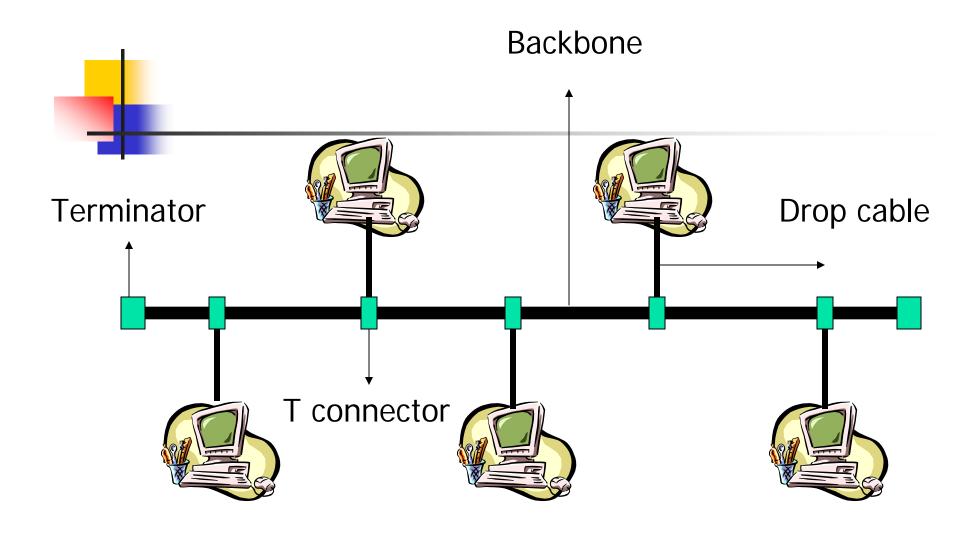
- Extends the max: distance by connecting separate segments together.
- Selectively pass signals from one medium segment to another
- Used to minimize network traffic

Multiplexers

 Are used to combine two or more separate signals on single transmission media segment to make full use of the transmission media Internetwork Connectivity Hardware

- Used to connect 2 individual networks without losing their separate identities
 - Routers
 - Brouters
 - CSU/DSU

 Routers : - Connect two or more logically separate networks (or sub networks)

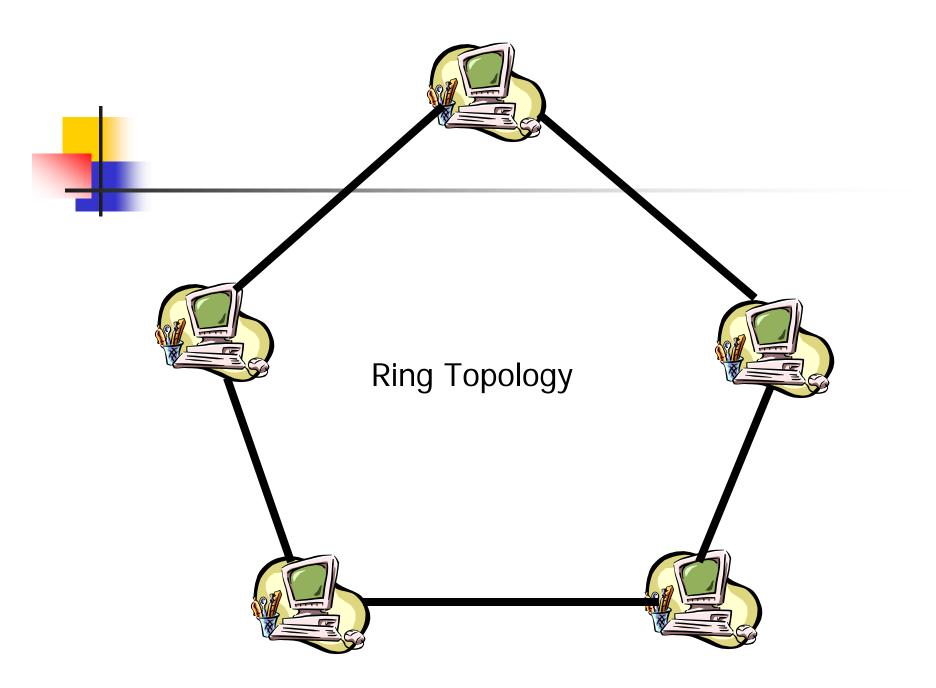

- Brouters : are routers which performs also as bridges
- Channel Service Unit/Digital Service Unit : - are devices that prepare electric pulse signals for transmission on WAN transmission media; protects from electrical noise and unsafe electric voltages

Physical layer addresses the following :-

- Connection types : -Point to Point or multipoint
- Physical topology : -Bus, Star,Ring, Mesh, Cellular
- Signaling : Digital, Analog
- Bit Synchronization : Sync, Asynchronous
- Bandwidth usage: Broadband, Base band
- Multiplexing: -TDM, FDM, Stat TDM

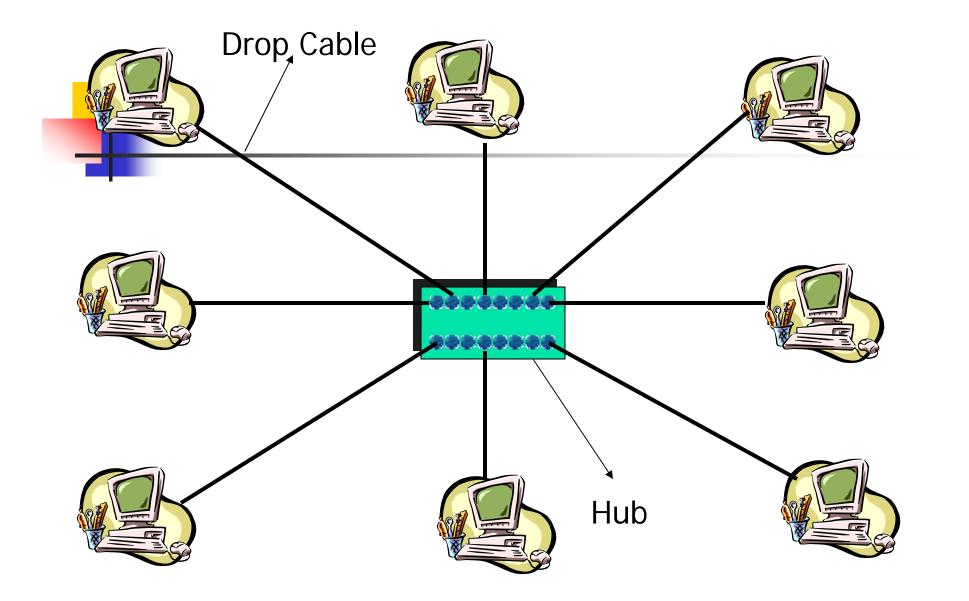
Physical Topology

- Is the complete physical structure of the transmission media
- Things to be taken care during choosing a topology
 - Ease of installation
 - Ease of reconfiguration
 - Ease of troubleshooting
 - Number of units affected by media failure



Bus Topology

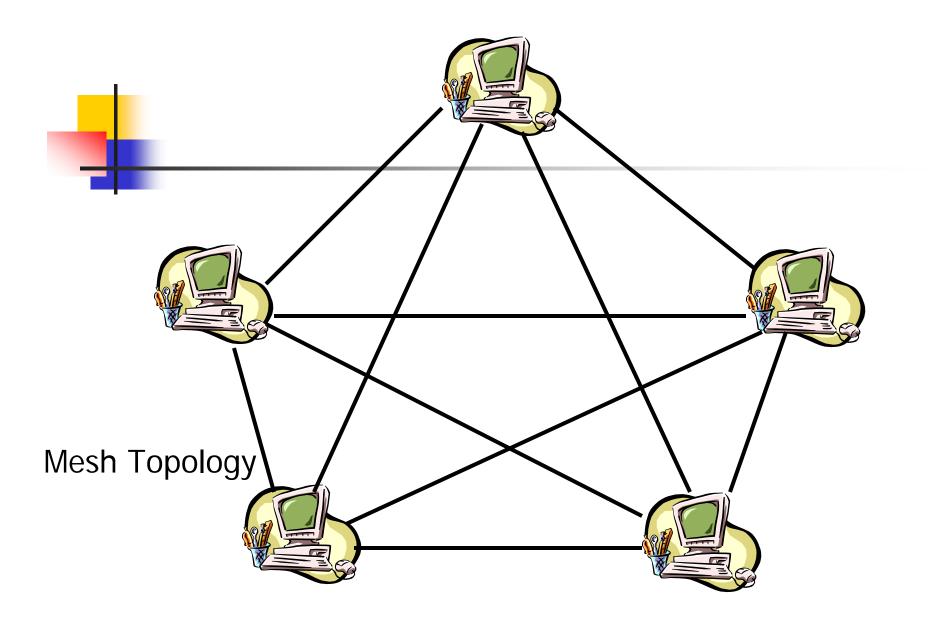
Bus Topology – features


Uses a long cable called Backbone

- Short cables called Drop cables can be attached to backbone to connect nodes
- Backbone is terminated at both ends
- Relatively easy to install
- Requires less media than others
- Difficult to troubleshoot
- All units affected by media failure
- Difficult to reconfigure

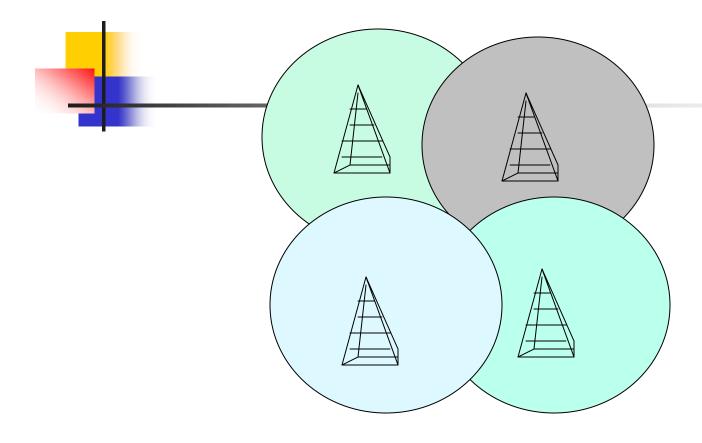
Ring Topology - features

- Is a circular, closed loop topology
- Signals are regenerated at each node; so minimal degradation
- Cable faults can easily be identified
- More difficult to install and reconfigure
- Media failure can cause complete network failure in uni-directional rings



Star Topology

Star Topology


 Uses a central device with drop cables extending in all directions

- Star topologies can be nested within other stars
- Each device is connected via a point to point link to the central device
- Easy to reconfigure, troubleshoot
- Requires more cable than others
- Media faults will not affect another segment

Mesh Topology - features

- Has point to point connection
 - between every device in the network
- Excessive bandwidth is wasted for node to node signaling
- Easy to isolate faults, troubleshoot etc
- Extremely fault tolerant
- Difficult to install and reconfigure

Cellular Topology

Cellular Topology

- Combines wireless point to point and multipoint strategies
- Divides a geographic area into cells
- Devices within a cell communicates with a central station or hub
- Devices can roam from cell to cell while maintaining connection
- Easy to install, troubleshoot
- No need of media reconfiguration when adding or moving users

Broadband Systems

- Uses the media's capacity for a single channel
- Multiple channels are created using a process called Frequency Division Multiplexing

Multiplexing

- Allows multiple devices to
 - communicate simultaneously over s single transmission media
- Equipment used for this purpose is called Multiplexer or mux
- 3 common methods used in mux
 - Frequency Division Multiplexing (FDM)
 - Time Division Multiplexing (TDM)
 - Statistical Time Division Multiplexing (Stat TDM)

Frequency Division Multiplexing (FDM)

- Uses separate frequencies to establish multiple channels within a broadband medium
- Special carrier signals are created by mux and data signals are added to it during transmission and are removed at receiving end

Time Division Multiplexing (TDM)

- Divides a single channel into shorttime slots
- Time slots are of the same length and same order – so also called Synchronous TDM

Statistical Time Division Multiplexing (Stat TDM)

- Dynamically allocates timeslots to active devices in priority basis
- Overcomes the wastage due to unused timeslotsm

MAC Address

- These are unique hardware addresses typically assigned by hardware vendors
- The format used depends on the media access method used so it it is called MAC address
- All devices in the network, like bridges require this address to transmit packets